Large Scale Local Online Similarity/Distance Learning Framework based on Passive/Aggressive
نویسندگان
چکیده
Similarity/Distance measures play a key role in many machine learning, pattern recognition, and data mining algorithms, which leads to the emergence of metric learning field. Many metric learning algorithms learn a global distance function from data that satisfy the constraints of the problem. However, in many real-world datasets that the discrimination power of features varies in the different regions of input space, a global metric is often unable to capture the complexity of the task. To address this challenge, local metric learning methods are proposed that learn multiple metrics across the different regions of input space. Some advantages of these methods are high flexibility and the ability to learn a nonlinear mapping but typically achieves at the expense of higher time requirement and overfitting problem. To overcome these challenges, this research presents an online multiple metric learning framework. Each metric in the proposed framework is composed of a global and a local component learned simultaneously. Adding a global component to a local metric efficiently reduce the problem of overfitting. The proposed framework is also scalable with both sample size and the dimension of input data. To the best of our knowledge, this is the first local online similarity/distance learning framework based on PA (Passive/Aggressive). In addition, for scalability with the dimension of input data, DRP (Dual Random Projection) is extended for local online learning in the present work. It enables our methods to be run efficiently on high-dimensional datasets, while maintains their predictive performance. The proposed framework provides a straightforward local extension to any global online similarity/distance learning algorithm based on PA. Experimental results on some challenging datasets from machine vision confirm that the extended methods considerably enhance the performance of related global ones without increasing the time complexity.
منابع مشابه
Large Scale Online Learning of Image Similarity Large Scale Online Learning of Image Similarity Through Ranking
Learning a measure of similarity between pairs of objects is an important generic problem in machine learning. It is particularly useful in large scale applications like searching for an image that is similar to a given image or finding videos that are relevant to a given video. In these tasks, users look for objects that are not only visually similar but also semantically related to a given ob...
متن کاملOnline Bayesian Passive-Aggressive Learning
Online Passive-Aggressive (PA) learning is an effective framework for performing max-margin online learning. But the deterministic formulation and estimated single large-margin model could limit its capability in discovering descriptive structures underlying complex data. This paper presents online Bayesian Passive-Aggressive (BayesPA) learning, which subsumes the online PA and extends naturall...
متن کاملLarge Scale Online Learning of Image Similarity through Ranking
Learning a measure of similarity between pairs of objects is an important generic problem in machine learning. It is particularly useful in large scale applications like searching for an image that is similar to a given image or finding videos that are relevant to a given video. In these tasks, users look for objects that are not only visually similar but also semantically related to a given ob...
متن کاملOnline learning of positive and negative prototypes with explanations based on kernel expansion
The issue of classification is still a topic of discussion in many current articles. Most of the models presented in the articles suffer from a lack of explanation for a reason comprehensible to humans. One way to create explainability is to separate the weights of the network into positive and negative parts based on the prototype. The positive part represents the weights of the correct class ...
متن کاملOnline Sparse Passive Aggressive Learning with Kernels
Conventional online kernel methods often yield an unbounded large number of support vectors, making them inefficient and non-scalable for large-scale applications. Recent studies on bounded kernel-based online learning have attempted to overcome this shortcoming. Although they can bound the number of support vectors at each iteration, most of them fail to bound the number of support vectors for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018